追求更小的 DRAM 单元尺寸(cell size)仍然很活跃并且正在进行中。对于 D12 节点,DRAM 单元尺寸预计接近 0.0013 um?。无论考虑使用 DUV 还是 EUV 光刻,图案化挑战都是重大的。
特别是,ASML 报告说当中心到中心(center-to-center)值达到 40 nm 时,即使对于 EUV ,也不推荐使用单一图案化。
在本文中,我们将展示对于 12 纳米及更高节点的 DRAM 节点,电容器中心到中心预计将低于 40 纳米,因此需要多重图案化。
存储电容器的 DRAM 单元布局
存储电容器排列成六边形阵列(图 1)。有源区设计规则由位线间距和字线间距决定。

对于 0.001254 um?的单元尺寸和略低于 12 nm 的有源区设计规则,38 nm 的位线间距和 33 nm 的字线间距将导致 38 nm 的中心到中心和 32.9 nm 的对角线间距。
对于 0.33 NA EUV 系统,六边形阵列将使用六极照明(hexapole illumination),其中每个极产生三光束干涉图案(图 2)。四个象限极产生与其他两个水平极不同的模式。这导致具有独立随机性的两个独立剂量分量。这些被添加到最终的复合模式中。

图 2. DRAM 存储模式的六极照明由 4 个象限极(灰色)和两个水平极(黄色)组成。根据照明方向,生成的三光束干涉图案具有特定方向。
由于特征边缘处大量吸收的光子散粒噪声,图案放置误差的随机效应非常显着,正如参考文献中已经公开的那样,很容易超过 1 nm 的覆盖规格,较低的吸收剂量似乎明显更差(图 3)。

图 3. 38 nm x 66 nm cell(字线间距 = 33 nm)中中心柱的随机放置误差(仅 X),在 0.33 NA EUV 系统中具有预期的六极照明。这里显示了两个吸收剂量的一系列 25 个不同实例。
转到 0.55 NA 会增加焦点深度严重降低的问题。NA 为 0.55 会导致 15 nm 散焦,导致最内层和最外层衍射级之间的相移 >50 度(图 4),这会由于褪色严重降低图像对比度。

因此,存储节点图案很可能需要由两个交叉线图案形成(图 5),每个交叉线图案可以通过 EUV 单次曝光或 DUV SAQP(自对准四重图案)形成,两种选择都是单掩模工艺。
SAQP 工艺更成熟(早于 EUV)并且没有 EUV 的二次电子随机问题,因此它应该是首选。
尽管如此,对于 SAQP 情况,间隔线必须在布局和线宽粗糙度方面得到很好的控制。

三星还展示了一种二维间隔蜂窝图案,而不是线型 SAQP,它使用具有起始蜂窝图案的单个掩膜,而不是具有起始线图案的两个掩膜。
虽然上述情况考虑了 38 nm 位线间距和 33 nm 字线间距,但由于六边形对称性,它也适用于交换间距的情况(33 nm 位线间距和 38 nm 字线间距)。